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Abstract. We apply the Mellin~Barnes integral representation to several situations of interest in
mathematical physics, At the purely mathematical level, we derive useful asymptotic expansions
of different zeta-functions and partition functions. These results are then etnployed in different
topics in quantum field theory, which include the high-temperature expansion of the free energy
of a scalar field in vitrastatic curved spacetime, the asymptotics of the p-brane density of states,
and an explicit approach to the asymptotics of the determinants that appear in string theory.

1. Imtroduction

Expansions in terms of asymptotic series constitute a very important tool in various branches
of physics and mathematics. For example asymptotic expansions in inverse powers of
large masses of the field have always been a usually employed approximation (see, for
example, [1, 2} and references therein). Another example is the high-temperature expansion
in different contexts [3,4]. For the numerical analysis of several functions the use of
asymptotic expansions has also been shown to be very powerful [5,6]. Finally, let us
mention applications to the theory of partitions [7], where asymptotic series are basic in the
proof of the theorem of Meinardus {8,9], which is fundamental to the calculation of the
asymptotic density of p-brane states [10].

In all the mentioned applications, the asymptotic series arises when calculating a
functional determinant, which has to be regularized by some method. Usually, this
functional determinant is a one-loop approximation to a functional integral resulting from
integrating out the quadratic part of the quantum fluctuations around some background
fields extremizing the action [11}. The quadratic part of the quantum fluctuations is often
described by elliptic operators of the form

E =—-D?4+ M? Dy =8, —iA, (1.1)
with a gauge potential A, and some (effective) mass M? of the theory.
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One of the possible regularization schemes for the product of eigenvalues is the zeta-
function regularization procedure introduced some time ago [12]. In this procedure the
one-loop quantum correction I' to the action is described by

I = 3ndet E = ~}[£1(0) — Inp* 42 (0)]

being £z (s) the zeta-function associated with the operator E, that is

Le(s) =y A}

J

where the A; are the eigenvalues of E. Furthermore, u is a mass scale that needs to be
introduced for dimensional reasons. Thus, in using this scheme, the basic mathematical tool
is the analysis of zeta-functions associated with (pseudo-} elliptic differential operators and
the determipation of its properties depending on the problem under consideration.

On the purely mathematical side of the problem a very interesting and self-contained
reference is the one by Jorgenson and Lang [13]. In these lecture notes the authors describe
how parts of analytic number theory and parts of the spectral theory of certain operators can
be merged under a more general analytic theory of regularized products of certain sequences
of numbers satisfying a few basic axioms. However, their exposition ts kept on a general
level, which is not directly applicable to the physical problems. Physicists often have to
deal with very specific situations, generally fulfilling these few basic axioms, but for such
specific situations it is more useful if results are given in full detail. There is thus a need for
a bridge between the purely mathematical part of the problem and its specific applications
in physics. This is part of the motivation of the present article, its main emphasis being on
the physical applications described below.

In order to keep the paper self-contained, we have decided to refer not only to the
associated mathematical literature, but also to present the techniques in the context of
physically relevant situations. So, for example, a detailed treatment of Epstein-type zeta-
functions is of great interest, because these functions are essential for the computation of
effective actions in non-trivial backgrounds that appear in different contexts [14] and for
the analysis of the Casimir effect [15).

The most elementary example is that of the Hurwitz zeta-function

o
s, a) = Z(n +a)”
=0
which has been treated in detail only recently in [16-18]. Before, the only derivatives of
fu(s; @) available in the usual tables were

g
3 tuls;a) = —sius + 1, a)
a

= InT(a) — §In(Zm).

£=0

The aim in [16] was to obtain an asymptotic expansion of 8¢y (s; a)/8s valid for all negative
values of s using as starting point Hermite’s integral representation for fy(s; ). Later on,
this result has been rederived using a direct method connected with the calculus of finite
differences [17], applicable also to other functions of interest. The result has been extended
to 8¢ (s; @)/8s" in [18)], where a very useful recurrent formula has been derived, which
completely solves the problem of the calculation of any derivative of the Hurwitz zeta-
function. In all these references, it has been mentioned that the asymptotic expansion
of ¢fi(s; @) may also be simply found by differentiation of the asymptotic expansion of

a
é—stn(S; a)
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tuls; a); however, this procedure is not justified a priori (in fact, it is controlled by a
Tauberian theorem).

In order to introduce and illustrate a different, powerful technique for the derivation
of asymptotic series, which is the Mellin transformation technique (Jorgenson and Lang
also call it vertical transform), we will take once more the Hurwitz zeta-function ty(s; a).
It serves as an elementary example in order to introduce the Mellin technique, which, as
mentioned, is applicable in a much wider range [13]. We will derive an asymptotic series
expansion for 8"¢u(s; @) /85™(s; a), for all values n € Np. In particluar we will show again
that, in order to obtain the asymptotic series of the derivatives of the Hurwitz zeta function,
one may simply differentiate the asymptotic expansion (a method that was proven to be
valid in this case by applying standard mathematical results for asympiotic expansion, such
as Laplace’s method and Watson’s lemma [16, 5]).

After having presented the method for the case of {y(s; a), we consider other different
quantities, explaining briefly at the beginning of each section how these appear in actual
physical situations. In section 3 the more complicated example of an Epstein-type zeta-
function is presented. Section 4 is devoted to the treatment of sums which most frequently
appear in finite-temperature quantum field theory and in the theory of partitions. We use
the new technique in order to rederive the high-temperature expansion of a free scalar field
in curved spacetime. Furthermore, we outline a generalization of the theorem of Meinardus
[8,9], which enables one to find the asymptotic state density of p-branes [10]. The last
application is concerned with properties of some determinants appearing in (super-) string
theory. In the conclusions of the paper, the results presented here are briefly summarized.

2. Asymptotic expansion of the Hurwitz zeta-function

The aim of this section is to explain how the approach works in obtaining the asymptotic
expansions of a large class of functions [13]. As an example, we choose the very useful
case of the Hurwitz zeta-function {y(s; @), defined by [19]

fuls; a) = Z(n +a)™* D<axgl Res>1 2.1)

and derive an asymptotic expansion for large values of a (for previous treatments see [16-
18]).
To start with, we rewrite equation (2.1), as usual, in the form

ti(s;a)=a” 1"( )Zf de £ leintedr,

The key idea is to make use of the complex integral representation of the exponential in
the form of an integral of Mellin—Barnes type:
i chico
V= r @ 2.2
e a7 ) de C{o)v (2.2)

with Rev > 0 and ¢ € R, ¢ > 0. Restricting it to the part e~ only, it leads to

is;a)=a* + ! i[m der=le™® fc+im do D'(e)n™ ™™
2ril(s) &=t Jo et

=100

1 oo cHoo
a5 _ =0 =S
=a "+ TG ;:] ./cl . da'a)(s —adn (2.3}
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Now we would like to interchange the summation and integration in order to arrive at an
expression in terms of Riemann zeta-functions. By choosing ¢ > 1, the resulting sum is
absolutely convergent, leading to

c+ioo
riT(s) Jomico
The integrand has poles on the left of the contour at (choosing s > ¢) @ = 1 (the pole

of fr(e)) and & = —k, & € Ny (the poles of I'(xr)). All poles are of order one and, with
Z(1 —2m) = — By, /(2m), for m € N, one easily finds the asymptotic behaviour

as;a)=a™" + do T'(@)(s —a)pla)a® ™. 2.4)

i 2 (5)k-1B,
fuls ) ~ 4o~ + a4 Y et B vt 25)
where (5), is the Pochhammer symbol (s); = I'(s + &)/ I"(s). This result agrees (of course)
with the known result. However, here it has been rederived with nearly no caiculational
effort,

Let us now concentrate on the asymptotic expansion of (3" /35"y (s; ). It has already
been proven in the literature [16-18] that the asymptotic expansion of the first derivative of
the Hurwitz zeta-function is simply the term by term derivative of the asymptotic expansion
(2.5), a procedure which is not justified @ priori and needs a lengthy demonstration in terms
of Watson’s lemma. We would now like to show that, in the case considered above, our
procedure is true for all derivatives of {u(s; a).

The proof is the following. Looking at (2.4}, it is easily seen that integration and
differentiation may safely be commuted. The reason for this is that differentiation does
not destroy the rapid decay of the gamma function, which is seen using the representation
8.341.1 in [20] for InI'{z). In fact, by doing so no additional poles are created and the
residue of the pole is just the derivative of the old one. Thus the asymptotic expansion of
(8%/3sM)ry(s; @) is simply the term by term differentiate of equation (2.5). Formulae for
very quick explicit derivation of those (together with some basic examples) can be found
in [18].

3. Asymptotic series expansion of Epstein-type zeta-functions

As the next example, we would like to consider the Epstein-type zeta-function
]
E¥sy=) [(n+a)+M7]”. (3.1)
n=0

The range of summation is chosen in such a way that M = 0 corresponds to the Hurwitz
zeta-function. As the presented calculations will show, other index ranges (depending on
the details of the subsequently described physical situations) do not give rise to additional
problems and may be treated in exactly the same way.

This type of function, or multi-dimensional generalizations of it, is of importance for
different problems in quantum field theory. For example it naturally appears in the context
of gauge field mass generation in partially compactified spacetimes of the type TV x R”,
In some detail, a massive complex scalar field ¢ defined on TV x R" with, for example,
periodic boundary conditions for each of the toroidal components is coupled to a constant
Abelian gauge potential A,,, Due to the non-trivial topology, constant values of the toroidal
components are physical parameters of the theory and the effective potential of the gauge
theory will depend on these parameters. For the calculation of the effective potential a
detailed knowledge of E(s) is necessary, where the parameter a corresponds to an Abelian
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gauge potential in a toroidal dimension [21, 22]. The parameter M2 here plays the role of the
mass squared m? of the scalar field. Realizing that an imaginary constant gauge potential is
equivalent to a chemical potential [4], the relevance of E2(s) for finite-temperature quantum
field theory in Minkowski spacetime and for the phenomenon of Bose—Einstein condensation
is also obvious [3]. The case a = 0 is relevant to describe topics like topological symmetry
breaking or restoration in self-interacting A¢* scalar field theories on the spacetime R> x S’
[14]. There, the effective mass naturally appearing in the theory is M2 = m? - (A/2)¢2,
with the classical scalar background field ¢. Finally, let us mention the appearance of
similar functions in Casimir energy calculations in quantum field theory in spacetimes with
compactified dimensions {15].

In all the above mentioned problems, the way the dimensions are compactified (circle,
parzllel plates) and the relevant boundary conditions for the field (periodic, antiperiodic,
Neumann, Dirichlet), may lead to a different range of summations in (3.1).

As already mentioned, the parameter M2 usuvally plays the role of an (effective) mass
of the theory. An approximation often employed is the large mass approximation in which
one looks for an asymptotic expansion of physical quantities in inverse powers of the mass.
We will now show that using the approach of section 2 this may very easily be obtained
too. For the sake of generality let us consider

Ef(s) =) [(n + @) + M} (32)

where the arbitrary (positive) g leads to no additional complications and is included for that
reason.

We are interested in the asymptotic expansion for large values of 2. Proceedmg as in
section 2, using the Mellin transform of the exponential, this time for e~¢+’ one arrives
at

B o [ -1, —M% ohio —~Bot =
S =5t Z,mﬂj; e /:_im da T(@)n + )™t
_ 1 e+imo _ ' o2
= 7T i do T'(e) (s — e)eu(Bor; a) M™%, (3.3)

Once more, the only poles that appear are of order one, located at & = 1/8 (pole of the
Hurwitz zeta-function) and at &« = —n, n € Ny (poles of the gamma-function). The residues
are easily found, leading to the asymptotic series

g0 FG—1/8) (1) 2(1/6—3) 1"(s+n) _ -2
E¥6)~ —grey T l5) M +P()Z( ——  ru(~fn; )M

n=0
(3.4)
For the special case 8 =m € N, using [20]
) Bpy1(a)
é'H( n; (1) = n+1

with the Bernoulli polynomials B, (a}, equation (3.4) may be written as

" ( l/m) 2(1/m=s) _ _ HP(S +n) Brrm-l-l (a) —25—2n
E") ~ =56 (m)M l"(s) HZ_;( D e

(3.3)

Expressions of this sort (at least in the most common case when g = 2) have been applied
in the past in models of effective Lagrangians with the aim of understanding the quark
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confinement problem in QCD [2]. In these theories, the heavy-mass limit for the quarks
appears naturally as a good (in principle) first approximation. Different models along the
same line are now fashionable again and expressions of the kind (3.5) may prove to be
useful once more. On the other hand, equation {3.5) and, in particular, its partial derivatives
with respect to s and M? are the sort of basic expressions that appear in other physical
applications where compactification of spacetime plays a basic role, apart from the one
already mentioned, for example Kaluza-Klein theories [23] and the computation of the
vacuum energy density in compact or cylindrical universes [24].

It is rather obvious how to change the procedure in order to obtain a corresponding
asymptotic expansion for the generalization of (3.2} in the form of a2 multi-dimensional
series (see [25], where this idea is developed in detail). Whenever this approach is useful,
the calculational effort (if we only keep, as here, the dominant terms of the asymptotic
expansion) will not exceed the one presented in the two examples above. The corresponding
results are of relevance, whenever in the context of topological mass generation [14] or the
Casimir effect [15] more than one dimension is compactified.

4, Application to partition sums

In order to obtain a more detailed idea about how to use the presented techniques, let us
consider the quantity

G@t) = itn (1 _et *«) (4.1)
n=1

where we assume that A, are the eigenvalues of a positive definite elliptic differential
operator L, acting on a p-dimensional Riemannian manifold M with smooth boundary. In
order to motivate the following considerations, let us give an example of how this quantity
actually arises in concrete field-theoretic problems. Most frequently, sums like the one in
equation (4.1} appear in finite-temperature quantum field theory. It was in this context,
in particular, that another method involving the commutation of two (or more) series was
developed. There, integral representations similar to the one in equation (2.3) have been
used at some point (see for example [26]). However, making systematic use of the Mellin~
Barnes type integrals from the beginning of the calculation leads to further simplication of
the analysis.

For definiteness let us consider a free massive scalar field in an ultrastatic curved
spacetime A (possibly with boundary)} [27, 28], to which we will apply the resulis derived
in this chapter, The free energy of this system is defined by

Figl = —% In Trexp[— 8 H] (4.2)

with the Hamiltonian A = Ej Ei{N; + 1/2] and the inverse temperature 8. Here E; are
the energy eigenvalues determined by (—A + &R + m)y; = E_’,-zxjfj with the Riemannian
curvature R of M, furthermore —A is the Laplace-Beltrami operator of the spatial section
and m is the mass of the field. The part (1/2) 3 ; Ej of the Hamiltonian H is usually called
the zero-point energy of the field. The operator ¥; is the number operator associated with
¥ and the trace in (4.2) has to be taken over the Fock space of the field defined through
the modes ;.
A formal calculation then yields [29]

FIf] = % > B+ % > In(1 - e PE) (4.3)
i i



Mellin-Barnes integral representation 623

with the divergent zero-point energy and the finite-temperature part being exactly of the
form (4.1). As is seen, the limit r — 0 in (4.1) corresponds to the high-temperature limit
in (4.3).

Another quantity associated with (4.1) is the generalized generating function

ziy =] (1 - e"‘/"_“) - (4.4)
]
where a is a real number. The knowledge of its asymptotic behaviour for small ¢ is relevant,
for example, in obtaining the asymptotic state density behaviour of p-branes.
Let us now consider G(¢). The Mellin-transformation technique, once again, gives very
easily the asymptotic expansion. First, by expanding the logarithm and using (2.2), one has

1 c+ico

—w o
GO =5 | daT@ml+oy g(L. 5) 4.5)
where
((Lovy= 3 A" (4.6)
n=1

is the zeta-function associated with the sequence of eigenvalues {A,},cy. In order to
interchange ), and the integral, one has to choose ¢ > p/2.

For the evaluation of {4.5) one has to know the meromorphic structure of £(L, v).
General zeta-function theory (see for example [30]) tells us that its poles of order one
are located at v = p/2,(p — 1)/2,...,1/2; —(2 + 1)/2,] € Ny (we will denote the
corresponding residues by R, and the finite part by C,). Thus one has the following five
possible types of poles enclosed on the left of the contour:

{ya=p,p—1,...,1: pole of order one due to {(L, a/2).

(i) & = O pole of order two due to I'(2) and £r(l 4 e).

(ii}) & = —1: pole of order two due to I'(e) and (L, /2)

(iv) o = =2k, k € N: pole of order one due to I'{x).

(v} =—(2k+ 1), k € N: pole of order one due to the poles of I'(e) and {{L,x/2)
and the zero of ¢r{1 + ).

Summing over all contributions, one arrives at

P
G@) ~ =2 TR+ D7 Ry = [35'(L.0) — (1) (L, 0)]
i=1
- {lc_l + R_y [InQ) + ¥ (@) ~ lnt]]t

20+1

- Z @fk(l =20 (L, =) +2 ; ng(_ZI}R—(Z’-H)/Z 4.7

where the contour contributions which. are exponentially damped for ¢ — 0 have not been
written explicitly.

5. First physical applications: a high-temperature expansion and the asymptotic state
density of p-branes

As already mentioned, a first physical application is quite immediate. We can provide
the explicit form of the high-temperature expansion of a free (massive} scalar field in an
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ultrastatic, curved spacetime M (possibly with boundary}. As briefly described, the free
energy for this system is

FIp)= 5 Y B+ F® 5.1)
I
with

F& = % Z In(1 — e~#5)) (5.2)
J

where the small 7-expansion in equation (4.1) here corresponds to the high-temperature
limit. By expressing the relevant information of the zeta-function ¢(L, v} in terms of the
heat-kernel coefficients,

. I o=
K@ —Ze -t ( 4:::) I=0§1wb;r’ (5.3)
that is
br_g 1y PEH
=m {L,-D=(~ 1)1'(4 ) (54)

the complete high-temperature expansion of the free energy may be found. Using the
doubling and the reflection formula for the I'-function, it reads:

1 1 B 27
F® — __ppe(L,—1/2 { —bput ] ( )+ 2) + ———bs1 +P+S}
2 {( /)+(47z) et ln ¥(2) 5 glnp

(5.5)
with

el BN @
> b%_]w(z;r-) Fe I+ (5.6)

r=1/21,..
and
(d=1)/2 —p—142r
) ()
P=— 3 M &=—-vr 1-2r 5.7
r=o§,;,... ,(2 > trip + ) (5.7)

where PP denotes the finite part of £(L, v). This is certainly the result previousty found
in {28].

Another application has to do with the calculation of the asymptotic state density of
p-branes, Let us briefly consider it. The partition function associated with a generating
function of the kind G{¢) may be written as

Z(z) =e7°0@ =y " g,e™ (5.8)

where z is a complex variable, z = ¢ +iy. The problem is to find the asymptotic behaviour
of d, for large n. This can be accomplished by making use of the asymptotic behaviour
found in equation (4.7). The Cauchy integral theorem gives

1 -
dy = 7 f dze™ Z(z) (5.9)
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where the countour integral consists of a small circle around the origin. For n very large,
the leading contribution comes from the asymptotic behaviour of Z(z) for z small. As a
consequence, we may write

A -
4, ~ — d B zn+Cz™? 3.10
"= i % ce G-10)
where
A =exp{iat'(L, 0} (5.11)
B = —at(L,0) (5.12)
C =2aT(p);(1+ p)Re. (5.13)
A straightforward calculation, based on a standard saddle-point technique, gives
A _ p+1 1/(p+1 1
4y B (pC)CBIIAED, B2 P2 gy [_( pCY P+, pHEHD
T VampED P
(5.14)

which generalizes Meinardus’ theorem [8] (see also the recent article by Actor [9]). In the
particular case of the semiclassical quantization of a p-brane, compactified on the torus 77,
this result leads to the asymptotic behaviour of the corresponding level state density for
large values of the mass (see [10]).

6. Application to the asymptotics of determinants in string theory

The last application concerns the asymptotics of the determinants which appear in string
theory. It is well known thai the genus-g contribution to the Polyakov bosonic string
partition function can be written as [31]

Zy= [ {dr)we(det P P) /2 (det A,)~" 6.1)

where (dr)wp is the Weil-Petersson measure on the Teichmiiller space, and (det P P) and
det A, are the scalar and ghost determinants, respectively. For our purposes, here it is
sufficient to observe that the integrand can be expressed as [31]

L(7) = (det PT P)!72(det A,) ™1 = e~ Z/(1)2Z(2) 6.2)

where Z(s) is the Selberg zeta-function and ¢ is a constant. We recall that the Selberg
zeta-function, for untwisted scalar fields (character y (¥} = 1), is defined by (for Res > 1)

20
z(s) =[] —e ) (6.3)
¥ =0
here the product is over primitive simple closed geodesics ¥ on a Riemann surface and [, is
the corresponding length. Furthermore, Z(s) is an entire function, non-vanishing at § = 2
but which has a simple zero at s = 1 [32], corresponding to the zero mode of the scalar
Laplace operator.

It is also known that physical quantities in string theory are expressed as integrals over
the moduli space. The integrands are regular inside, thus, the only possible divergences
have to be associated with the asymptotics near the boundary of the moduli space. It is
possible to show that this boundary corresponds to the length of some geodesic tending
to 0. So we are led to investigate the asymptotics for the Selberg zeta-function and its



626 E Elizalde et al

derivatives. For the sake of simplicity, let us consider one pinching geodesic y; and denote
by {; its length. Since )y and its inverse are counted as distinct primitive geodesics, we can
write

o0
Z(s) = R(s) [ J(1 —e™0¥mh)? (6.4)
n=0
with R(s) bounded [33], and the problem reduces to finding the asymptotic behaviour of
the quantities Z(2) and Z'(1) when I; goes to 0. With regard to the first quantity, this can
easily be accomplished by means of the technique we have introduced. In fact, we obtain

In = " e dzI ()¢ (1 + 2)eulz; sHTE (6.5)

The simple pole at z = 1 and the double pole at z = 0 give the leading contributions,
namely

Zis) . 2%(2) 20 (0:5)
Hulis),

b =~ T (6.6)
As a result

Z(s) = R(s)e™™ A 2u0), ©.7)
With 4(0; 5) = 1/2 — 5, we have, in particular,

Z(2) ~ R(2)e™ Py (6.8)
and

Z(1 4 €) = R(1 + €)e™™ A, (6.9)

Similar considerations are valid for the spinor sector, which is relevant, e.g., for super-
strings. In this case, we have for Res > 1 (for details we refer the reader to [31])

zi) = [TT 111 = x@e 1. (6.10)

¥ n=0

Here the product is over primitive simple closed geodesics ¥ on a Riemann surface, 1,
is the corresponding length and the character x(y) = %! depends on the spin structure.
Furthermore, Z;(s) is non-vanishing at s = 3/2, but has a zero of order 2N at s = I/2, N
being the number of zero modes of the Dirac D operator, We also have, for the gravitino
ghosts determinant,

det(P;5, Pijp) = €92 Z1(3/2) 6.11)
and for the square of the Dirac determinant
z®(1/2)
2 _ 1
detD* = ecnz—N,!. (6.12)

Above, cjyy and cp are constants. Again the singularities are near the boundary of the
moduli space and this boundary corresponds to the length of some geodesic tending to 0.
Let I; be this length. The Ramond case (x(¥) = 1) is formally similar to the untwisted
scalar case. So let us consider the antiperiodic case (Neveu-Schwarz), ie. x(y) = —1. We
have

Zi(s) = R|(s) ﬁ (1+ e-(’+">f=)2 (6.13)
n=0
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with R;(5) bounded, and the problem reduces to finding the asymptotic behaviour of the
quantities Z1(s) and its derivatives at certain points, when ; goes to 0. Again, the Mellin
technique is wseful. It gives -

Zy(s) 1
n =— dz D)1 = 2791 + 2)eulz; )2 6.14

B = 7, ET@0 =270+ D0 ) (6.14)
Due to the presence of the factor 1 — 274, we have simple poles at z = 0, 1. Thus, the
leading contributions are

AL AC)

Ri(s) 1— +204(0; 5) In2 {6.15)
and, as a result,
| Z1(5) = Ry(s)e™ /610 %a0), (6.16)
In particular, we have
Z1(3/2) = R (3/2)e" /. (6.17)

The asymptotic behaviour of the derivatives at s = I and s = 1/2 are more difficult to
investigate. A possible approach consists in starting from [32]

Zf(S) Z Z —(s—l/?.)nlr . (618)
Z(s) i 2s1nh—
Separating here the contribution of the shrinking geodesic, we have
Z(@) _~~_h o~ (s-1/Dn;
76) ; smh”—"L + H(s). (6.19)

Again, the Mellin technique allows us to write
Z'(sy L
Z(s) 7 Jrers2
Note that one can arrive at the same result, taking the derivative of equation (6.14) with
respect to § and making use of zI'(z) = '(z 4+ 1) and

dzl(z)s (2)fnlz; sH2 + H(s). (6.20)

= (e @) = ~ath(a+ 15 ). (621)

Thus the analogue result for the Neveu—Schwarz spinor is simply
Zy(s) _ =
Z21(8) 7 Sregs2

In the first case, the integrand has a double pole at z = 1 and simple poles at
z=0,—1,—2,.... Thus, the leading contribution is

dzI (2)¢ (@D (z; HITHL ~ 217%) 4 Hy(s). (6.22)

Z'(s)
= —2[Inl; + ¢ (s} + H(s) 4+ Q). (6.23)
Z(s)
In the second case, we have simple poles at z = 1,0, —1, ... and the leading term is
’
Zi8) . a1n2+ Hyls) + 0. (6.24)
Z1(s)

Let us briefly discuss the bosonic case. For Res > 1, there are no problems and the above
result gives us the asymptotic behaviour for the logarithmic derivative of the Selberg zeta-
function, when /i goes to 0. The delicate point is 5 = 1, where Z(s) has a simple zero.
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However, by using the analytical properties of the Selberg zeta-function, one may first show
R(1 + e)H(] + €) =~ B(1) 4+ O(¢), and thus we get

Z'(1) = B(l)e™ 2y (6.25)

which gives the correct leading contribution [33]. We conciude by saying that the asymptotic
behaviours found for Z(2) and Z'(1) lead to the celebrated double-pole theorem of Belavin
and Knizhnik [34] for the quantum bosonic string.

7. Conclusions

In this article we have applied the Mellin-Barnes integral transformation to several situations
of present interest in mathematical physics. We have shown, in our opinion, that this
technique is best suited for the derivation of asymptotic expansions in different contexts.
Compared with other approaches, it is certainly more simpie and straightforward, Moreover,
the expansions we have obtained may be relevant in their own right as we have seen
in sections 4 to 6. Supplemented by numerical techniques and explicit results that have
become available recently—adapted to the notion of asymptotic approximation—our method
also constitutes a useful device in order to provide actual numbers to be contrasted with
experimental measurements in fields iike the determination of the Casimir energy or the
study of actual physical implications of some Kaluza—Klein theories [23,24].
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Note added in proof. After submission of this article we became aware that, in the context of the thermodynamic
partition function, the given approach was already presented by Allen [35].
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