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Abstract We apply the Mellin-Barnes integral representation to several situations of interest in 
myhematical physics. A1 the purely mathematical level, we derive useful asymptotic expansions 
of different zeta-functions and parlition functions These results are then employed in different 
topics in quantum field theory, which include the high-temperature expansion of the free energy 
of a scalar field in ultraslatic curved spacetime. the asymplotics of the p-brane densiry of stales, 
and an explicit approach to the asymptolics of Uw determinants thal appear in string theory. 

1. Introduction 

Expansions in terms of asymptotic series constitute a very important tool in various branches 
of physics and mathematics. For example asymptotic expansions in inverse powers of 
large masses of the field have always been a usually employed approximation (see, for 
example, [l,  21 and references therein). Another example is the high-temperature expansion 
in different contexts [3,4]. For the numerical analysis of several functions the use of 
asymptotic expansions has also been shown to be very powerful [5,6].  Finally, let us 
mention applications to the theory of partitions 171, where asymptotic series are basic in the 
proof of the theorem of Meinardus [8,9], which is fundamental to the calculation of the 
asymptotic density of p-brane states [IO]. 

In all the mentioned applications, the asymptotic series arises when calculating a 
functional determinant, which has to be regularized by some method. Usually, this 
functional determinant is a one-loop approximation to a functional integral resulting from 
integrating out the quadratic part of the quantum fluctuations around some background 
fields extremizing the action [ I l l .  The quadratic part of the quantum fluctuations is often 
described by elliptic operators of the form 

E = - D ~ + M ~  D ,  = 8, - iA, (1.1) 

with a gauge potential A, and some (effective) mass M2 of the theory. 
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One of the possible regularization schemes for the product of eigenvalues is the zeta- 
function regularization procedure introduced some time ago [IZ]. In this procedure the 
one-loop quantum correction r to the action is described by 

r = In det E = -$<i(O) - In f i ' < ~ ( O ) ]  

being <&) the zeta-function associated with the operator E .  that is 

where the Aj are the eigenvalues of E .  Furthermore, p is a mass scale that needs to be 
introduced for dimensional reasons. Thus, in using this scheme, the basic mathematical tool 
is the analysis of zeta-functions associated with @seudo-) elliptic differential operators and 
the determination of its properties depending on the problem under consideration. 

On the purely mathematical side of the problem a very interesting and self-contained 
reference is the one by Jorgenson and J a g  1131. In these lecture notes the authors describe 
how parts of analytic number theory and parts of the spectral theory of certain operators can 
be merged under a more general analytic theory of regularized products of certain sequences 
of numbers satisfying a few basic axioms. However, their exposition is kept on a general 
level, which is not directly applicable to the physical problems. Physicists often have to 
deal with very specific situations, generally fulfilling these few basic axioms, but for such 
specific situations it is more useful if results are given in full detail. There is thus a need for 
a bridge between the purely mathematical part of the problem and its specific applications 
in physics. This is part of the motivation of the present article, its main emphasis being on 
the physical applications described below. 

In order to keep the paper self-contained, we have decided to refer not only to the 
associated mathematical literature, but also to present the techniques in the context of 
physically relevant situations. So, for example, a detailed treatment of Epstein-type zeta- 
functions is of great interest, because these functions are essential for the computation of 
effective actions io non-trivial backgrounds that appear in different contexts [I41 and for 
the analysis of the Casimir effect [15]. 

The most elementary example is that of the Hurwitz zeta-function 

which has been treated in detail only recently in [16-18]. Before, the only derivatives of 
{H(S; a)  available in the usual tables were 

a 
aa 
-<H(S; a)  = -S<H(S + 1; a)  

The aim in [ 161 was to obtain an asymptotic expansion of a{&; a) /&  valid for all negative 
values of s using as starting point Hermite's integral representation for <H(s; a). Later on, 
this result has been rederived using a direct method connected with the calculus of finite 
differences [17], applicable also to other functions of interest. The result has been extended 
to a'<B(s; a)/asn in [IS], where a very useful recurrent formula has been derived, which 
completely solves the problem of the calculation of any derivative of the Hurwitz zeta- 
function. In all these references, it has been mentioned that the asymptotic expansion 
of <;l(s; a) may also be simply found by differentiation of the asymptotic expansion of 
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<H(s; a);  however, this procedure is not justified a priori (in fact, it is controlled by a 
Tauberian theorem). 

In order to introduce and illustrate a different, powerful technique for the derivation 
of asymptotic series, which is the Mellin transformation technique (Jorgenson and Lang 
also call it vertical transform), we will take once more the Hurwitz zeta-function ~ H ( s ;  a). 
It serves as an elementary example in order to introduce the Mellin technique, which, as 
mentioned, is applicable in a much wider range [13]. We will derive an asymptotic series 
expansion for an<& a)  /asn(s; a), for all values n E NO. In particluar we will show again 
that, in order to obtain the asymptotic series of the derivatives of the Hurwitz zeta function, 
one may simply differentiate the asymptotic expansion (a method that was proven to be 
valid in this case by applying standard mathematical results for asymptotic expansion, such 
as Laplace's method and Watson's lemma [16,51). 

After having presented the method for the case of <H(s; a) ,  we consider other different 
quantities, explaining briefly at the beginning of each section how these appear in actual 
physical situations. In section 3 the more complicated example of an Epstein-type zeta- 
function is presented. Section 4 is devoted to the treatment of sums which most frequently 
appear in finite-temperature quantum field theory and in the theory of partitions. We use 
the new technique in order to rederive the high-temperature expansion of a free scalar field 
in curved spacetime. Furthermore, we outline a generalization of the theorem of Meinardus 
[8,9], which enables one to find the asymptotic state density of p-branes [lo]. The last 
application is concerned with properties of some determinants appearing in (super-) shing 
theory. In the conclusions of the paper, the results presented here are briefly summarized. 

2. Asymptotic expansion of the Hurwitz zeta-function 

The aim of this section is to explain how the approach works in obtaining the asymptotic 
expansions of a large class of functions [13]. As an example, we choose the very useful 
case of the Hurwitz zeta-function <H(s; a) .  defined by [19] 

and derive an asymptotic expansion for large values of a (for previous treatments see [16- 
181). 

To start with, we rewrite equation (2.1), as usual, in the form 

The key idea is to make use of the complex integral representation of the exponential in 
the form of an integral of Mellin-Barnes type: 

- - - da!r(a)u* (2.2) 2rri e-im 

with Re U > 0 and c E R, c > 0. Restricting it to the part e-"' only, it leads to 
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Now we would like to interchange the summation and integration in order to arrive at an 
expression in terms of Riemann zeta-functions. By choosing c > 1, the resulting sum is 
absolutely convergent, leading to 

rc+im 

The integrand has poles on the left of the contour at (choosing s > c) (Y = 1 (the pole 
of <&)) and 01 = -k. k E No (the poles of r(a)). All poles are of order one and, with 
c(1 - Zm) = --B%/(Zm), for m E PI, one easily h d s  the asymptotic behaviour 

where ( S ) k  is the P o c h h m e r  symbol (s)t = I'(s t k)/ r(s). This result agrees (of course) 
with the known result. However, here it has been rederived with nearly no calculational 
effort. 

Let us now concentrate on the asymptotic expansion of (P/as")<H(s; a). It has already 
been proven in the literature [16-18] that the asymptotic expansion of the first derivative of 
the Hurwitz zeta-function is simply the term by term derivative of the asymptotic expansion 
(2.5), a procedure which is not justified a priori and needs a lengthy demonstration in terms 
of Watson's lemma. We would now like to show that, in the case considered above, our 
procedure is true for all derivatives of <H(s; a).  

The proof is the following. Looking at (2.4). it is easily seen that integration and 
differentiation may safely be commuted. The reason for this is that differentiation does 
not destroy the rapid decay of the gamma function, which is seen using the representation 
8.341.1 in E201 for lnr(z). In fact, by doing so no additional poles are created and the 
residue of the pole is just the derivative of the old one. Thus the asymptotic expansion of 
(a"/W)[& a)  is simply the term by term differentiate of equation (2.5). Formulae for 
very quick explicit derivation of those (together with some basic examples) can be found 
in [181. 

3. Asymptotic series expansion of Epstein-type zeta-functions 

As the next example, we would like to consider the Epstein-type zeta-function 

(3.1) 

The range of summation is chosen in such a way that M = 0 corresponds to the Hurwitz 
zeta-function. As the presented calculations will show, other index ranges (depending on 
the details of the subsequently described physical situations) do not give rise to additional 
problems and may be treated in exactly the same way. 

This type of function, or multi-dimensional generalizations of it, is of importance for 
different problems in quantum field theory. For example it  naturally appears in the context 
of gauge field mass generation in partially compactified spacetimes of the type T N  x R". 
In some detail, a massive complex scalar field @ defined on TN x R" with, for example, 
periodic boundary conditions for each of the toroidal components is coupled to a constant 
Abelian gauge potential A,. Due to the non-trivial topology, constant values of the toroidal 
components are physical parameters of the theory and the effective potential of the gauge 
theory will depend on these parameters. For the calculation of the effective potential a 
detailed knowledge of E2(s )  is necessary, where the parameter a corresponds to an Abelian 
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gauge potential in a toroidal dimension [21, 221. The parameter MZ here plays the role of the 
mass squared mz of the scalar field. Realizing that an imaginary constant gauge potential is 
equivalent to a chemical potential [4], the relevance of E'@) for finite-temperature quantum 
field theory in Minkowski spacetime and for the phenomenon of Box-Einstein condensation 
is also obvious [3]. The case U = 0 is relevant to describe topics like topological symmetry 
breaking or restoration in self-interacting A@4 scalar field theories on the spacetime R' x S1 
[14]. There, the effective mass naturally appearing in the theory is M2 = mz + (A/2)4', 
with the classical scalar background field 4. Finally, let us mention the appearance of 
similar functions in Casimir energy calculations in quantum field theory in spacetimes with 
compactified dimensions 1151. 

In all the above mentioned problems, the way the dimensions are compactified (circle, 
parallel plates) and the relevant boundary conditions for the field (periodic, antiperiodic, 
Neumann, Dirichlet), may lead to a different range of summations in (3.1). 

As already mentioned, the parameter M2 usually plays the role of an (effective) mass 
of the theory. An approximation often employed is the large mass approximation in which 
one looks for an asymptotic expansion of physical quantities in inverse powers of the mass. 
We will now show that using the approach of section 2 this may very easily be obtained 
too. For the sake of generality let us consider 

where the arbitrary (positive) p leads to no additional complications and is included for that 
reason. 

We are interested in the asymptotic expansion for large values of M2. Proceeding as in  
section 2, using the Mellin transform of the exponential, this time for one anives 
at 

Once more, the only poles that appear are of order one, located at oc = l/p @ole of the 
Hurwitz zeta-function) and at 01 = -n, n E No (poles of the gamma-function). The residues 
are easily found, leading to the asymptotic series 

(3.4) 
For the special case p = m E N, using [20] 

with the Bemoulli polynomials B,(a), equation (3.4) may be written as 

(3.5) 
Expressions of this sort (at least in the most common case when = 2) have been applied 
in the past in models of effective Lagrangians with the aim of understanding the quark 



622 E Eiizaide et ai 

confinement problem in QCD [Z], In these theories, the heavy-mass limit for the quarks 
appears naturally as a good (in principle) first approximation. Different models along the 
same line are now fashionable again and expressions of the kind (3.5) may prove to be 
useful once more. On the other hand, equation (3.5) and, in particular, its partial derivatives 
with respect to s and M 2  are the sort of basic expressions that appear in other physical 
applications where compactification of spacetime plays a hasic role, apart from the one 
already mentioned, for example Kaluza-Klein theories [23] and the computation of the 
vacuum energy density in compact or cylindrical universes [NI. 

It is rather obvious how to change the procedure in order to obtain a corresponding 
asymptotic expansion for the generalization of (3.2) in the form of a multi-dimensional 
series (see 1251, where this idea is developed in detail). Whenever this approach is useful, 
the calculational effort (if we only keep, as here, the dominant terms of the asymptotic 
expansion) will not exceed the one presented in the two examples above. The corresponding 
results are of relevance, whenever in the context of topological mass generation [ 141 or the 
Casimir effect I151 more than one dimension is compactified. 

4. Application to partition sums 

In order to obtain a more detailed idea about how to use the presented techniques, let us 
consider the quantity 

where we assume that A, are the eigenvalues of a positive definite elliptic differential 
operator L, acting on a p-dimensional Riemannian manifold Iw with smooth boundary. In 
order to motivate the following considerations, let us give an example of how this quantity 
actually arises in concrete field-theoretic problems. Most frequently, sums like the one in 
equation (4.1) appear in finitstemperature quantum field theory. I t  was in this context, 
in particular, that another method involving the commutation of two (or more) series was 
developed. There, integral representations similar to the one in equation (2.3) have been 
used at some point (see for example [26]).  However, making systematic use of the Mellin- 
Barnes type integrals from the beginning of the calculation leads to further simplication of 
the analysis. 

For definiteness let us consider a free massive scalar field in an ultrastatic curved 
spacetime M (possibly with boundary) [27,28], to which we will apply the results derived 
in this chapter. The free energy of this system is defined by 

(4.2) 

with the Hamiltonian X = cj Ej[& + 1/21 and the inverse temperature j3. Here E, are 
the energy eigenvalues detennined by (-A + 5 R + m*)+j = E;+j with the Riemannian 
curvature R of M ,  furthermore -A  is the LaplaceBeltrami operator of the spatial section 
and m is the mass of the field. The part (1/2) E, Ej of the Hamiltonian H is usually called 
the zero-point energy of the field. The operator Nj is the number operator associated with 
Qj and the trace in (4.2) has to be taken over the Fock space of the field defined through 
the modes +j . 

A formal calculation then yields [29] 

(4.3) 
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with the divergent zero-point energy and the finite-temperature part being exactly of the 
form (4.1). As is seen, the limit f + 0 in (4.1) corresponds to the high-temperature limit 
in (4.3). 

Another quantity associated with (4.1) is the generalized generating function 

where a is a real number. The knowledge of its asymptotic behaviour for small f is relevant, 
for example, in obtaining the asymptotic state density behaviour of p-branes. 

Let us now consider G(t). The Mellin-transformation technique, once again, gives very 
easily the asymptotic expansion. First, by expanding the logarithm and using (2.2), one has 

where 

(4.6) 

is the zeta-function associated with the sequence of eigenvalues {AnjnE~. In order to 
interchange E, and the integral, one has to choose c > p / 2 .  

For the evaluation of (4.5) one has to know the meromorphic structure of C(L, U). 
General zeta-function theory (see for example [30]) tells us that its poles of order one 
are located at U = p / 2 ,  ( p  - 1)/2,. . . , 1/2; -(U + l ) /Z ,  I E No (we will denote the 
corresponding residues by R, and the finite part by C,,), Thus one has the following five 
possible types of poles enclosed on the left of the contour: 

(i) cr = p ,  p - 1 , .  . . , 1: pole of order one due to [ ( L ,  a / 2 ) .  
(ii) cr = 0 pole of order two due to r(a)  and [ ~ ( l  + E ) .  

(iii) cr = -1: pole of order two due to r(a) and <(L,cr/Z) 
(iv) 01 = -2, k E N: pole of order one due to r(cr). 
(v) ff = -(U( + I ) ,  k E N: pole of order one due to the poles of r(a) and ( (L,cr/2)  

Summing over all contributions, one arrives at 
and the zero of ( ~ ( 1  +a). 

P 

G(Z? - z x r ( l ? < R ( l  +I?f-'Ri - [ i< ' (L ,O)  - (Int)<(L,O)] 
I=I  

-{;c-; + ~ - t 1 1 n ( 2 i r ) + ~ ( 2 ) - 1 n t l } t  

where the contour contributions which are exponentially damped for t + 0 have not been 
written explicitly. 

5. First physical applications: a high-temperature expansion and the asymptotic state 
density of p-brans 

As already mentioned, a first physical application is quite immediate. We can provide 
the explicit form of the high-temperature expansion of a free (massive) scalar field in an 
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ulmastatic, curved spacetime M (possibly with boundary). As briefly described, the free 
energy for this system is 

with 

(5.2) 

where the small t-expansion in equation (4.1) here corresponds to the high-temperature 
limit. By expressing the relevant information of the zeta-function { ( L ,  v )  in terms of the 
heat-kernel coefficients, 

that is 

(5.3) 

the complete high-temperature expansion of the free energy may be found. Using the 
doubling and the reflection formula for the r-function, it reads: 

(5.5) 

with 

and 

where P P  denotes the finite part of ( ( L ,  U). This is certainly the result previously found 
in [28]. 

Another application has to do with the calculation of the asymptotic state density of 
p-branes. Let us briefly consider it. The panition function associated with a generating 
function of the kind G(t )  may be w i a e n  as 

(5.8) 

where z is a complex variable, z = t + iy. The problem is to find the asymptotic behaviour 
of d,, for large n. This can be accomplished by making use of the asymptotic behaviour 
found in equation (4.7). The Cauchy integral theorem gives 

Z(z) = e- oG(d = c&e-"Z 
" 

(5.9) 
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where the countour integral consists of a small circle around the origin. For n very large, 
the leading contribution comes from the asymptotic behaviour of Z(z) for z small. As a 
consequence, we may write 

A 
2ni 

d, N - f dzzEeL”+Cz-D (5.10) 

where 

A = exp(!p<‘(L,O)} (5.11) 

c = zar(p)<(i + p ) + .  

B = -a<(L. 0) (5.12) 

(5.13) 

A straightforward calculation, based on a standard saddle-point technique, gives 

which generalizes Meinardus’ theorem [SI (see also the recent article by Actor [9]). In the 
particular case of the semiclassical quantization of a p-brane, compactified on the torus TP, 
this result leads to the asymptotic behaviour of the corresponding level state density for 
large values of the mass (see [lo]). 

6. Application to the asymptotics of determinants in string theory 

The last application concerns the asymptotics of the determinants which appear in string 
theory. It is well known that the genus-g contribution to the Polyakov bosonic shing 
partition function can be written as [31] 

Z, = (ds)wp(det P+P)’l’(det Ag)-I3 (6.1) 

where (ds)Wp is the Weil-Petersson measure on the Teichmiiller space, and (det P+P) and 
detA, are the scalar and ghost determinants, respectively. For our purposes, here it is 
sufficient to observe that the integrand can be expressed as [31] 

Z8(s) = (det P+P)’l’(det = eC(Z~-Z)Z’(1)-’3Z(2) (6.2) 
where Z(s) is the Selberg zeta-function and c is a constant. We recall that the Selberg 
zeta-function, for untwisted scalar fields (character ~ ( y )  = I) ,  is defined by (for Res z 1) 

J 

here the product is over primitive simple closed geodesics y on a Riemann surface and lr is 
the corresponding length. Furthermore, Z(s) is an entire function, non-vanishing at s = 2 
but which has a simple zero at s = 1 [32], corresponding to the zero mode of the scalar 
Laplace operator. 

It is also known that physical quantities in string theory are expressed as integrals over 
the moduli space. The integrands are regular inside, thus, the only possible divergences 
have to be associated with the asymptotics near the boundaiy of the moduli space. It is 
possible to show that this boundaq corresponds to the length of some geodesic tending 
to 0. So we are led to investigate the asymptotics for the Selberg zeta-function and its 
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derivatives. For the sake of simplicity, let us consider one pinching geodesic yl and denote 
by I I  its length. Since yi and its inverse are counted as distinct primitive geodesics, we can 
write 

m 
I 

Z(S) = R ( S )  n ( ~  -e- 0 t " Y l ) Z  (6.4) 

with R(s) bounded [33], and the problem reduces to finding the asymptotic behaviour of 
the quantities Z(2) and Z'(1) when I ]  goes to 0. With regard to the first quantity, this can 
easily be accomplished by means of the technique we have introduced. In fact, we obtain 

"=O 

The simple pole at z = 1 and the double pole at z = 0 give the leading contributions, 
namely 

As a result 

(6.7) .as)  - ( I 

z(2) N ~ ( 2 ) ~ - + 1 1 - ~  I (6.8) 

Z(I + E )  n. ~ ( 1  + t)e-n2/3'3~;1. (6.9) 

R s)e-x~/u,lz~"H'o:s' 

With < ~ ( 0 ;  s) = 1/2 - s, we have, in particular, 

and 

Similar considerations are valid for the spinor sector, which is relevant, e.g., for super- 
shings. In this case, we have for Res > 1 (for details we refer the reader to [31]) 

(6.10) 

Here the product is over primitive simple closed geodesics y on a Riemann surface, I ,  
is the corresponding length and the character x(y)  = & I  depends on the spin slructure. 
Furthermore, Z,(s) is non-vanishing at s = 3/2, but has a zero of order 2N at s = 1/2, N 
being the number of zero modes of the Dirac D operator. We also have, for the gavitino 
ghosts determinant, 

det(P;2P1/2) = Zi (3/2) (6.1 I )  
and for the square of the Dirac determinant 

ZY"7(1/2) 
det D2 = ecD 

2N! ' 
(6.12) 

Above, cI/z and CD are constants. Again the singularities are near the boundary of the 
moduli space and this boundary corresponds to the length of some geodesic tending to 0. 
Let ZI be this length. The Ramond case (,y(y) = 1) is formally similar to the untwisted 
scalar case. So let us consider the antiperiodic case (NeveuSchwarz), i.e. x(y) = -1. We 
have 

(6.13) 



Mellin-Barnes integral representation 627 

with RI  (s) bounded, and the problem reduces to finding the asymptotic behaviour of the 
quantities ZI (s) and its derivatives at certain points, when 11 goes to 0. Again, the Mellin 
technique is useful. It gives 

Due to the presence of the factor 1 - 2-', we have simple poles at z = 0, 1. Thus, the 
leading contributions are 

and, as a result, 

Zl(s) N Rl(s)e"z~'~Z"H(o'). 

In particular, we have 

(6.15) 

(6.16) 

Z1(3/2) N $R1(3/2)e"~~~". (6.17) 

The asymptotic behaviour of the derivatives at s = 1 and s = 1/2 are more difficult to 
investigate. A possible approach consists in starting from [32] 

Separating here the contribution of the shrinking geodesic, we have 

Again, the Mellin technique allows us to write 

(6.18) 

(6.19) 

(6.20) 

Note that one can arrive at the same result, taking the derivative of equation (6.14) with 
respect to s and making use of i r ( z )  = r ( z  + 1) and 

Thus the analogue result for the Neveu-Schwarz spinor is simply 

In the first case, the integrand has a double pole at i = 1 and simple poles at 
z = 0, -1, -2 , .  . _. Thus, the leading contribution is 

ZB = -2[1nll+ * ( s ) ~  + ~ ( s )  + o(ll). 
Z(S) 

(6.23) 

In the second case, we have simple poles at z = 1,0, - 1. . . . and the leading term is 

= - z I ~ ~ + H I ( S ) + O ( ~ ~ ) .  (6.24) 

Let us briefly discuss the bosonic case. For Res > 1, there are no problems and the above 
result gives us the asymptotic behaviour for the logarithmic derivative of the Selberg zeta- 
function, when 11 goes to 0. The delicate point is s = 1, where Z(s) has a simple zero. 

Zl(S) 
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However, by using the analytical properties of the Selberg zeta-function, one may first show 
R ( 1 +  c ) H ( I  + E )  zz B ( 1 )  + O(E) ,  and thus we get 

which gives the correct leading contribution [33]. We conclude by saying that the asymptotic 
behaviours found for Z(2) and Z’(1) lead to the celebrated double-pole theorem of Belavin 
and Knizhnik [34] for the quantum bosonic string. 

7. Conclusions 

In this article we have applied the Mellin-Barnes integral transformation to several situations 
of present interest in mathematical physics. We have shown, in our opinion, that this 
technique is best suited for the derivation of asymptotic expansions in different contexts. 
Compared with other approaches, it is certainly more simple and straightforward. Moreover, 
the expansions we have obtained may be relevant in their own right as we have seen 
in sections 4 to 6. Supplemented by numerical techniques and explicit results that have 
become available recently-adapted to the notion of asymptotic approximation-our method 
also constitutes a useful device in order to provide actual numbers to be contrasted with 
experimental measurements in fields l i e  the determination of the C a s i  energy or the 
study of actual physical implications of some Kaluza-Klein theories [23,24]. 
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